Optimal power quality monitor placement using genetic algorithm and Mallowâ€TMs Cp
نویسندگان
چکیده
This study presents a method to determine the optimal number and placement of power quality monitors (PQMs) in power systems by using genetic algorithm (GA) and Mallow’s Cp which is a statistical criterion for selecting among many alternative subset regressions. This procedure helps to avoid the dependency of set voltage sag threshold values of PQMs in the conventional monitor reach area based (MRA) method. In the proposed GACp method, the fitness function for problem modeling aims to minimize allocated monitors and minimize the difference between the Mallow’s Cp and the number of variables used for the multivariable regression model during estimation of unmonitored buses. After obtaining the optimal placements of PQMs by using the GACp method, the observability and redundancy of the monitors are tested to further reduce the redundant PQMs. The IEEE 30 bus test system is simulated using the DIGSILENT power factory software to validate the proposed method. The simulated results show that the GACp method requires only two PQMs to observe all voltage sags that may appear at each bus in the test system without redundancy.
منابع مشابه
Economic Evaluation of Optimal Capacitor Placement in Reconfiguration Distribution System Using Genetic Algorithm
Optimal capacitor placement, considering power system loss reduction, voltage profile improvement, line reactive power decrease and power factor correction, is of particular importance in power system planning and control. The distribution system operator calculates the optimal place, number and capacity of capacitors based on two major purposes: active power loss reduction and return on invest...
متن کاملOptimal DG Placement for Power Loss Reduction and Improvement Voltage Profile Using Smart Methods
Distributed Generations (DGs) are utilized to supply the active and reactive power in the transmission and distribution systems. These types of power sources have many benefits such as power quality enhancement, voltage deviation reduction, power loss reduction, load shedding reduction, reliability improvement, etc. In order to reach the above benefits, the optimal placement and sizing of DG is...
متن کاملLong-term Planning of Optimal Placement of Distribution Transformers to Improve Reliability and Power Quality with the Approach of Reducing Costs and Losses
One of the most critical and complex issues in long-term planning of distribution networks is the optimal placement of distribution transformers. In this paper, the optimal placement of distribution transformers was investigated based on a complete and multi-objective function. In the proposed method, location, optimal capacity, and the service area are determined by minimizing costs (investmen...
متن کاملApplication of Fuzzy and ABC Algorithm for DG Placement for Minimum Loss in Radial Distribution System
Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss, etc. This paper presents a new methodology using Fuzzy and Artificial Bee Colony algorithm(ABC) for the placement of Distributed Generators(DG) in the radial distribution systems to reduce the real power losses and to improve the voltage profile. A two-stage methodology is u...
متن کاملAerodynamic optimal design of wind turbine blades using genetic algorithm
Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013